小小千想和您聊一聊

当前位置: 首页> 技术分享> 大数据概念

大数据概念

  大数据:指无法在一定时间范围内用常规软件工具进行捕捉,管理和处理的数据集合,是需要新模式才能具有更强大的决策力,洞察发现力和流程优化能力的海量,高增长率和多样化的信息资产

  最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

  1 Byte =8 bit

  1 KB = 1,024 Bytes = 8192 bit

  1 MB = 1,024 KB = 1,048,576 Bytes

  1 GB = 1,024 MB = 1,048,576 KB

  1 TB = 1,024 GB = 1,048,576 MB

  1 PB = 1,024 TB = 1,048,576 GB

  1 EB = 1,024 PB = 1,048,576 TB

  1 ZB = 1,024 EB = 1,048,576 PB

  1 YB = 1,024 ZB = 1,048,576 EB

  1 BB = 1,024 YB = 1,048,576 ZB

  1 NB = 1,024 BB = 1,048,576 YB

  1 DB = 1,024 NB = 1,048,576 BB

  主要解决,海量数据的存储和海量数据的分析计算问题

  2 大数据的特点

  1、大量。大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别。随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)-、移动网络、各种智能工具,服务工具等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。

  2、多样。广泛的数据来源,决定了大数据形式的多样性。任何形式的数据都可以产生作用,目前应用最广泛的就是推荐系统,如淘宝,网易云音乐、今日头条等,这些平台都会通过对用户的日志数据进行分析,从而进一步推荐用户喜欢的东西。日志数据是结构化明显的数据,还有一些数据结构化不明显,例如图片、音频、视频等,这些数据因果关系弱,就需要人工对其进行标注。

  3、高速。大数据的产生非常迅速,主要通过互联网传输。生活中每个人都离不开互联网,也就是说每天个人每天都在向大数据提供大量的资料。并且这些数据是需要及时处理的,因为花费大量资本去存储作用较小的历史数据是非常不划算的,对于一个平台而言,也许保存的数据只有过去几天或者一个月之内,再远的数据就要及时清理,不然代价太大。基于这种情况,大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。数据无时无刻不在产生,谁的速度更快,谁就有优势。

  4、价值。这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果

  HADOOP背景介绍

  1.1 什么是HADOOP

  介绍官网hadoop.apache.com --> 看不懂可以使用百度翻译

  Apache Hadoop 为可靠的,可扩展的分布式计算开发开源软件。 Apache Hadoop软件库是一个框架,它允许使用简单的编程模型跨计算机群集分布式处理大型数据集(海量的数据)。 包括这些模块:

  • Hadoop Common:支持其他Hadoop模块的常用工具。

  • Hadoop分布式文件系统(HDFS™):一种分布式文件系统,可提供对应用程序数据的高吞吐量访问。

  • Hadoop YARN:作业调度和集群资源管理的框架。

  • Hadoop MapReduce:一种用于并行处理大型数据集的基于YARN的系统。

  上述每个模块有自己独立的功能,而模块之间又有相互的关联。

  广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈

  1.2 HADOOP产生背景

  雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题--------“如何解决数十亿网页的存储和索引问题”。

  • 2003年Google发表了一篇技术学术论文谷歌文件系统(GFS)。GFS也就是google File System,google公司为了存储海量搜索数据而设计的专用文件系统。

  • 2004年Nutch创始人Doug Cutting基于Google的GFS论文实现了分布式文件存储系统名为NDFS。

  ps:2003-2004年,Google公开了部分GFS和Mapreduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和Mapreduce机制,一个微缩版:Nutch

  • 2004年Google又发表了一篇技术学术论文MapReduce。MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行分析运算。

  • 2005年Doug Cutting又基于MapReduce,在Nutch搜索引擎实现了该功能。

  

  国内外HADOOP应用案例介绍

  • 大型网站Web服务器的日志分析:一个大型网站的Web服务器集群,每5分钟收录的点击日志高达800GB左右,峰值点击每秒达到900万次。每隔5分钟将数据装载到内存中,高速计算网站的热点URL,并将这些信息反馈给前端缓存服务器,以提高缓存命中率。

  • 运营商流量经营分析:每天的流量数据在2TB~5TB左右,拷贝到HDFS上,通过交互式分析引擎框架,能运行几百个复杂的数据清洗和报表业务,总时间比类似硬件配置的小型机集群和DB2快2~3倍。

  1.5 国内HADOOP的就业情况分析

  可以联网查智联

  大数据方面的就业主要有三大方向:

  • 数据分析类大数据人才对应岗位 大数据系统研发工程师

  • 系统研发类大数据人才对应岗位 大数据应用开发工程师

  • 应用开发类大数据人才对应岗位 大数据分析师

  大数据技术生态体系


  上图中涉及到的技术名词解释如下:

  1)Sqoop:sqoop 是一款开源的工具,主要用于在 Hadoop(Hive)与传统的数据库(mysql)间进 行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle 等)中的数据导进到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。

  2)Flume:Flume 是 Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume 支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume 提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

  3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

  (1)通过 O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以 TB 的消息 存储也能够保持长时间的稳定性能。 (2)高吞吐量:即使是非常普通的硬件 Kafka 也可以支持每秒数百万的消息 (3)支持通过 Kafka 服务器和消费机集群来分区消息。

  (4)支持 Hadoop 并行数据加载。

  4)Storm:Storm 为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时

  处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。 Storm 也可被用于“连

  续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式

  输出给用户。

  5)Spark:Spark 是当前最流行的开源大数据内存计算框架。可以基于 Hadoop 上存储的大数据进行计算。

  6)Oozie:Oozie 是一个管理 Hdoop 作业(job)的工作流程调度管理系统。Oozie 协调作业 就是通过时间(频率)和有效数据触发当前的 Oozie 工作流程。

  7)Hbase:HBase 是一个分布式的、面向列的开源数据库。HBase 不同于一般的关系数据库, 它是一个适合于非结构化数据存储的数据库。

  8)Hive:hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的 sql 查询功能,可以将 sql 语句转换为 MapReduce 任务进行运行。 其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开发专 门的 MapReduce 应用,十分适合数据仓库的统计分析。

  9)Mahout:

  Apache Mahout是个可扩展的机器学习和数据挖掘库,当前Mahout支持主要的4个用 例: 推荐挖掘:搜集用户动作并以此给用户推荐可能喜欢的事物。聚集:收集文件并进行相关文件分组。 分类:从现有的分类文档中学习,寻找文档中的相似特征,并为无标签的文档进行正确的归类。

  频繁项集挖掘:将一组项分组,并识别哪些个别项会经常一起出现。

  10)ZooKeeper:Zookeeper 是 Google 的 Chubby 一个开源的实现。它是一个针对大型分布 式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、 分布式同步、组服务等。 ZooKeeper 的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

上一篇:HTML5工具初识之网页编辑器

下一篇:docker教程

QQ技术交流群

千锋大数据官方①群
857910996

加入群聊